

II

B

R

蘝

 \mathbf{O}

N

Mechanical Vibrations

F	
U	
n	С
d	0
а	n
m	С
е	е
n	р
t	t
а	S
T	

S

Eng. Laith Batarseh

Brief History

B

R

蘝

0

N

 Vibration study started from about 6000 years ago when the 1st musical instrument was invented.

Pythagoras^(582-507 B.C)

Zhang Heng ^(132 A.D)

Galileo Galilee (1564-1642)

Importance of the study of vibration

Vibration is founded all around us

B

R

烝

0

N

- In past, vibration was studied to understand the physical phenomena and derive a mathematical model to describe it.
- In recent times, the motivation of studying vibration is the engineering applications.

Vibration in engineering : 1. In machines Most 2. Through machines have inherent unbalance Vibration

causes fatigue stresses in structures and wear in rotating parts of machine.

Importance of the study of vibration

- Resonance is one of the most devastating effects of vibration on machines and structures.
- Resonance happen when the natural frequency of the system equals the excitation frequency of the external excitation.

Tacoma Narrows bridge failure due to wind excitation (July 1,1940 – November 7,1940)

B

R

蘝

 \mathbf{O}

N

	ſ	
V		
Ι		
B		
R		
A		
Τ		
Ι		
0		
N		
Ď		

Degree of Freedom (DoF)

Definition

The minimum number of independent coordinates required to determine completely the positions of all parts of the system at any instant.

Degree of Freedom (DoF)

Examples (Three DoF)

Vibration system elements : mass or inertia

□In translational motion systems, we use the mass, M (kg) .

□In rotational and torsional vibration systems, we use the mass moment of inertia, I (kg.m²).

Newton's law of motion:

➤Translational system:

S

T

蘝

T

C

S

∑forces = Mass * acceleration ≻Rotational system:

> ∑Moment = mass moment of inertia *angular acceleration

Case2: translational and rotational masses coupled together

Equivalent translational mass

$$m_{eq} = m + \left(\frac{J_o}{R^2}\right)$$

S

烝

C

S

Equivalent rotational mass

$$T = \frac{1}{2}mx^{2} + \frac{1}{2}J_{o}\theta^{2}$$

$$J_{eq} = J_{o} + mR^{2}$$

Damping effect

Viscous damping

Energy dissipation due to motion of mechanical parts in fluids

- Amount of dissipated energy depends on:
 - Size and shapes of vibrating bodies
 - Fluid viscosity
 - Vibration frequency
 - Vibrating body velocity

The damping force is proportional to the velocity of the vibrating body

- Dry friction
- Material or solid or hysteretic damping

Harmonic motion

□Periodic motion is the motion that repeats it self after a period of time

□Harmonic motion is the simplest type of periodic motion

 $\Box \mathbf{x} = \mathbf{A}\mathbf{sin}(\mathbf{\theta}) = \mathbf{A}\mathbf{sin}(\mathbf{\omega}\mathbf{t})$

Velocity:
$$\frac{dx}{dt} = \omega A \cos(\omega t)$$

Acceleration:

$$\frac{d^2x}{dt^2} = -\omega^2 A \sin(\omega t) = -\omega^2 x$$

S

T

杰

С

S

End of chapter